3.485 \(\int \frac {a+a \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}} \, dx\)

Optimal. Leaf size=138 \[ \frac {2 a \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {2 a (c-d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} F\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {c+d \sin (e+f x)}} \]

[Out]

-2*a*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2)
*(d/(c+d))^(1/2))*(c+d*sin(f*x+e))^(1/2)/d/f/((c+d*sin(f*x+e))/(c+d))^(1/2)+2*a*(c-d)*(sin(1/2*e+1/4*Pi+1/2*f*
x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticF(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2)*(d/(c+d))^(1/2))*((c+d*sin(f
*x+e))/(c+d))^(1/2)/d/f/(c+d*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2752, 2663, 2661, 2655, 2653} \[ \frac {2 a \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {2 a (c-d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} F\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {c+d \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])/Sqrt[c + d*Sin[e + f*x]],x]

[Out]

(2*a*EllipticE[(e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[c + d*Sin[e + f*x]])/(d*f*Sqrt[(c + d*Sin[e + f*x])/(c
+ d)]) - (2*a*(c - d)*EllipticF[(e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/(d*f*Sq
rt[c + d*Sin[e + f*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {a+a \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}} \, dx &=\frac {a \int \sqrt {c+d \sin (e+f x)} \, dx}{d}+\frac {(-a c+a d) \int \frac {1}{\sqrt {c+d \sin (e+f x)}} \, dx}{d}\\ &=\frac {\left (a \sqrt {c+d \sin (e+f x)}\right ) \int \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}} \, dx}{d \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {\left ((-a c+a d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}\right ) \int \frac {1}{\sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}} \, dx}{d \sqrt {c+d \sin (e+f x)}}\\ &=\frac {2 a E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {c+d \sin (e+f x)}}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {2 a (c-d) F\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{d f \sqrt {c+d \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.25, size = 880, normalized size = 6.38 \[ a \left (\frac {\sec (e) \left (-\frac {F_1\left (-\frac {1}{2};-\frac {1}{2},-\frac {1}{2};\frac {1}{2};-\frac {\csc (e) \left (c+d \cos \left (f x-\tan ^{-1}(\cot (e))\right ) \sqrt {\cot ^2(e)+1} \sin (e)\right )}{d \sqrt {\cot ^2(e)+1} \left (1-\frac {c \csc (e)}{d \sqrt {\cot ^2(e)+1}}\right )},-\frac {\csc (e) \left (c+d \cos \left (f x-\tan ^{-1}(\cot (e))\right ) \sqrt {\cot ^2(e)+1} \sin (e)\right )}{d \sqrt {\cot ^2(e)+1} \left (-\frac {c \csc (e)}{d \sqrt {\cot ^2(e)+1}}-1\right )}\right ) \cot (e) \sin \left (f x-\tan ^{-1}(\cot (e))\right )}{\sqrt {\cot ^2(e)+1} \sqrt {\frac {\cos \left (f x-\tan ^{-1}(\cot (e))\right ) \sqrt {\cot ^2(e)+1} d+\sqrt {\cot ^2(e)+1} d}{d \sqrt {\cot ^2(e)+1}-c \csc (e)}} \sqrt {\frac {d \sqrt {\cot ^2(e)+1}-d \cos \left (f x-\tan ^{-1}(\cot (e))\right ) \sqrt {\cot ^2(e)+1}}{\sqrt {\cot ^2(e)+1} d+c \csc (e)}} \sqrt {c+d \cos \left (f x-\tan ^{-1}(\cot (e))\right ) \sqrt {\cot ^2(e)+1} \sin (e)}}-\frac {\frac {2 d \sin (e) \left (c+d \cos \left (f x-\tan ^{-1}(\cot (e))\right ) \sqrt {\cot ^2(e)+1} \sin (e)\right )}{d^2 \cos ^2(e)+d^2 \sin ^2(e)}-\frac {\cot (e) \sin \left (f x-\tan ^{-1}(\cot (e))\right )}{\sqrt {\cot ^2(e)+1}}}{\sqrt {c+d \cos \left (f x-\tan ^{-1}(\cot (e))\right ) \sqrt {\cot ^2(e)+1} \sin (e)}}\right ) (\sin (e+f x)+1)}{f \left (\cos \left (\frac {e}{2}+\frac {f x}{2}\right )+\sin \left (\frac {e}{2}+\frac {f x}{2}\right )\right )^2}+\frac {2 \sqrt {c+d \sin (e+f x)} \tan (e) (\sin (e+f x)+1)}{d f \left (\cos \left (\frac {e}{2}+\frac {f x}{2}\right )+\sin \left (\frac {e}{2}+\frac {f x}{2}\right )\right )^2}+\frac {2 F_1\left (\frac {1}{2};\frac {1}{2},\frac {1}{2};\frac {3}{2};-\frac {\sec (e) \left (c+d \cos (e) \sin \left (f x+\tan ^{-1}(\tan (e))\right ) \sqrt {\tan ^2(e)+1}\right )}{d \sqrt {\tan ^2(e)+1} \left (1-\frac {c \sec (e)}{d \sqrt {\tan ^2(e)+1}}\right )},-\frac {\sec (e) \left (c+d \cos (e) \sin \left (f x+\tan ^{-1}(\tan (e))\right ) \sqrt {\tan ^2(e)+1}\right )}{d \sqrt {\tan ^2(e)+1} \left (-\frac {c \sec (e)}{d \sqrt {\tan ^2(e)+1}}-1\right )}\right ) \sec (e) \sec \left (f x+\tan ^{-1}(\tan (e))\right ) \sqrt {\frac {d \sqrt {\tan ^2(e)+1}-d \sin \left (f x+\tan ^{-1}(\tan (e))\right ) \sqrt {\tan ^2(e)+1}}{\sqrt {\tan ^2(e)+1} d+c \sec (e)}} \sqrt {\frac {\sin \left (f x+\tan ^{-1}(\tan (e))\right ) \sqrt {\tan ^2(e)+1} d+\sqrt {\tan ^2(e)+1} d}{d \sqrt {\tan ^2(e)+1}-c \sec (e)}} \sqrt {c+d \cos (e) \sin \left (f x+\tan ^{-1}(\tan (e))\right ) \sqrt {\tan ^2(e)+1}} (\sin (e+f x)+1)}{d f \left (\cos \left (\frac {e}{2}+\frac {f x}{2}\right )+\sin \left (\frac {e}{2}+\frac {f x}{2}\right )\right )^2 \sqrt {\tan ^2(e)+1}}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sin[e + f*x])/Sqrt[c + d*Sin[e + f*x]],x]

[Out]

a*((Sec[e]*(1 + Sin[e + f*x])*(-((AppellF1[-1/2, -1/2, -1/2, 1/2, -((Csc[e]*(c + d*Cos[f*x - ArcTan[Cot[e]]]*S
qrt[1 + Cot[e]^2]*Sin[e]))/(d*Sqrt[1 + Cot[e]^2]*(1 - (c*Csc[e])/(d*Sqrt[1 + Cot[e]^2])))), -((Csc[e]*(c + d*C
os[f*x - ArcTan[Cot[e]]]*Sqrt[1 + Cot[e]^2]*Sin[e]))/(d*Sqrt[1 + Cot[e]^2]*(-1 - (c*Csc[e])/(d*Sqrt[1 + Cot[e]
^2]))))]*Cot[e]*Sin[f*x - ArcTan[Cot[e]]])/(Sqrt[1 + Cot[e]^2]*Sqrt[(d*Sqrt[1 + Cot[e]^2] + d*Cos[f*x - ArcTan
[Cot[e]]]*Sqrt[1 + Cot[e]^2])/(d*Sqrt[1 + Cot[e]^2] - c*Csc[e])]*Sqrt[(d*Sqrt[1 + Cot[e]^2] - d*Cos[f*x - ArcT
an[Cot[e]]]*Sqrt[1 + Cot[e]^2])/(d*Sqrt[1 + Cot[e]^2] + c*Csc[e])]*Sqrt[c + d*Cos[f*x - ArcTan[Cot[e]]]*Sqrt[1
 + Cot[e]^2]*Sin[e]])) - ((2*d*Sin[e]*(c + d*Cos[f*x - ArcTan[Cot[e]]]*Sqrt[1 + Cot[e]^2]*Sin[e]))/(d^2*Cos[e]
^2 + d^2*Sin[e]^2) - (Cot[e]*Sin[f*x - ArcTan[Cot[e]]])/Sqrt[1 + Cot[e]^2])/Sqrt[c + d*Cos[f*x - ArcTan[Cot[e]
]]*Sqrt[1 + Cot[e]^2]*Sin[e]]))/(f*(Cos[e/2 + (f*x)/2] + Sin[e/2 + (f*x)/2])^2) + (2*(1 + Sin[e + f*x])*Sqrt[c
 + d*Sin[e + f*x]]*Tan[e])/(d*f*(Cos[e/2 + (f*x)/2] + Sin[e/2 + (f*x)/2])^2) + (2*AppellF1[1/2, 1/2, 1/2, 3/2,
 -((Sec[e]*(c + d*Cos[e]*Sin[f*x + ArcTan[Tan[e]]]*Sqrt[1 + Tan[e]^2]))/(d*Sqrt[1 + Tan[e]^2]*(1 - (c*Sec[e])/
(d*Sqrt[1 + Tan[e]^2])))), -((Sec[e]*(c + d*Cos[e]*Sin[f*x + ArcTan[Tan[e]]]*Sqrt[1 + Tan[e]^2]))/(d*Sqrt[1 +
Tan[e]^2]*(-1 - (c*Sec[e])/(d*Sqrt[1 + Tan[e]^2]))))]*Sec[e]*Sec[f*x + ArcTan[Tan[e]]]*(1 + Sin[e + f*x])*Sqrt
[(d*Sqrt[1 + Tan[e]^2] - d*Sin[f*x + ArcTan[Tan[e]]]*Sqrt[1 + Tan[e]^2])/(c*Sec[e] + d*Sqrt[1 + Tan[e]^2])]*Sq
rt[(d*Sqrt[1 + Tan[e]^2] + d*Sin[f*x + ArcTan[Tan[e]]]*Sqrt[1 + Tan[e]^2])/(-(c*Sec[e]) + d*Sqrt[1 + Tan[e]^2]
)]*Sqrt[c + d*Cos[e]*Sin[f*x + ArcTan[Tan[e]]]*Sqrt[1 + Tan[e]^2]])/(d*f*(Cos[e/2 + (f*x)/2] + Sin[e/2 + (f*x)
/2])^2*Sqrt[1 + Tan[e]^2]))

________________________________________________________________________________________

fricas [F]  time = 0.46, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {a \sin \left (f x + e\right ) + a}{\sqrt {d \sin \left (f x + e\right ) + c}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral((a*sin(f*x + e) + a)/sqrt(d*sin(f*x + e) + c), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a \sin \left (f x + e\right ) + a}{\sqrt {d \sin \left (f x + e\right ) + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)/sqrt(d*sin(f*x + e) + c), x)

________________________________________________________________________________________

maple [A]  time = 1.31, size = 203, normalized size = 1.47 \[ -\frac {2 a \left (c -d \right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \left (\EllipticE \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c +\EllipticE \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d -2 \EllipticF \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d \right )}{d^{2} \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x)

[Out]

-2*a*(c-d)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(-(sin(f*x+e)-1)*d/(c+d))^(1/2)*(-d*(1+sin(f*x+e))/(c-d))^(1/2)*(Ell
ipticE(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))*c+EllipticE(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(
c+d))^(1/2))*d-2*EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))*d)/d^2/cos(f*x+e)/(c+d*sin(f*x+
e))^(1/2)/f

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a \sin \left (f x + e\right ) + a}{\sqrt {d \sin \left (f x + e\right ) + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)/sqrt(d*sin(f*x + e) + c), x)

________________________________________________________________________________________

mupad [B]  time = 7.62, size = 176, normalized size = 1.28 \[ \frac {a\,\left (2\,c\,\mathrm {F}\left (\mathrm {asin}\left (\frac {\sqrt {2}\,\sqrt {1-\sin \left (e+f\,x\right )}}{2}\right )\middle |\frac {2\,d}{c+d}\right )-2\,\left (c+d\right )\,\mathrm {E}\left (\mathrm {asin}\left (\frac {\sqrt {2}\,\sqrt {1-\sin \left (e+f\,x\right )}}{2}\right )\middle |\frac {2\,d}{c+d}\right )\right )\,\sqrt {{\cos \left (e+f\,x\right )}^2}\,\sqrt {\frac {c+d\,\sin \left (e+f\,x\right )}{c+d}}}{d\,f\,\cos \left (e+f\,x\right )\,\sqrt {c+d\,\sin \left (e+f\,x\right )}}-\frac {2\,a\,\mathrm {F}\left (\frac {\pi }{4}-\frac {e}{2}-\frac {f\,x}{2}\middle |\frac {2\,d}{c+d}\right )\,\sqrt {\frac {c+d\,\sin \left (e+f\,x\right )}{c+d}}}{f\,\sqrt {c+d\,\sin \left (e+f\,x\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(e + f*x))/(c + d*sin(e + f*x))^(1/2),x)

[Out]

(a*(2*c*ellipticF(asin((2^(1/2)*(1 - sin(e + f*x))^(1/2))/2), (2*d)/(c + d)) - 2*(c + d)*ellipticE(asin((2^(1/
2)*(1 - sin(e + f*x))^(1/2))/2), (2*d)/(c + d)))*(cos(e + f*x)^2)^(1/2)*((c + d*sin(e + f*x))/(c + d))^(1/2))/
(d*f*cos(e + f*x)*(c + d*sin(e + f*x))^(1/2)) - (2*a*ellipticF(pi/4 - e/2 - (f*x)/2, (2*d)/(c + d))*((c + d*si
n(e + f*x))/(c + d))^(1/2))/(f*(c + d*sin(e + f*x))^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ a \left (\int \frac {\sin {\left (e + f x \right )}}{\sqrt {c + d \sin {\left (e + f x \right )}}}\, dx + \int \frac {1}{\sqrt {c + d \sin {\left (e + f x \right )}}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))/(c+d*sin(f*x+e))**(1/2),x)

[Out]

a*(Integral(sin(e + f*x)/sqrt(c + d*sin(e + f*x)), x) + Integral(1/sqrt(c + d*sin(e + f*x)), x))

________________________________________________________________________________________